

Modeling disease progression in acute stroke by simultaneously using the NIH Stroke Scale, Scandinavian Stroke Scale and the Barthel Index

> Kristin E. Karlsson Justin J. Wilkins, Mats O. Karlsson and E. Niclas Jonsson

Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Sweden

PAGE 2007-06-13

Acute ischemic stroke

- 12 million people suffer acute ischemic strokes each year¹
 - One third die
 - One third are left permanently disabled

¹Atlas of Heart Disease and Stroke, WHO, September 2004

Clinical trials in acute ischemic stroke

- More than 74 000 patients with acute ischemic stroke have been randomized into clinical trials over the past 35 years¹
- Only one treatment has emerged from these investigations! (tPA treatment)

Challenges in drug development

- The nature of stroke is challenging
 - Multi-factorial disease
- Lack of informative biomarkers
- Several scales used
 - Neurological assessment
 - Functional assessment
- Blunt endpoints
 - Disease progression
 - The scales as such

Example of stroke data – measured on the NIH stroke scale

What would the benefits of modeling be in establishing clinical efficacy in stroke?

- Longitudinal analysis would use all the available information within one subject
- Appropriate handling of dropouts
- With modeling is it possible to look across scales and utilize the available information optimally

Easier to establish a drug effect

Will increase the statistical power

- To develop a single disease progression model for multiple stroke scales
 - That can be fitted to multiple scales simultaneously
 - That uses all assessments on all scales, including dropout

Data used in the development of the disease progression model

- Placebo arm from an efficacy trial of Chlomethiazole
- 772 patients
- *NIH Stroke Scale* Neurological assessment
 - Scores between 42 0
 - Day 0, 7, 30, and 90
- Scandinavian Stroke Scale Neurological assessment
 - Scores between 0 48
 - Day 0, 7, 30, and 90
- Barthel Index Functional assessment
 - Scores between 0 100 (increments of 5)
 - Day 7, 30, 60, and 90

Individual stroke scores measured on three different stroke scales

- Normalized scores: between 0-1
- 1 is good, 0 is bad

PAGE 2007, Kristin E. Karlsson

A longitudinal model for a scale specific disease progression in acute stroke

Time (days)

A longitudinal model for a *scale specific disease progression* in acute stroke

The structure of the *multi-scale model*

Scale specific components of the model:

- ✓ Probability of improvement
- ✓ Probability of not total recovery
- ✓ Relative score improvement + IIV
- ✓ Relative score decline + IIV

Scale independent components of the model:

- ✓IIV covariance on relative score improvement
- ✓IIV covariance on relative score decline
- ✓Dropout model

UPPSALA UNIVERSITET

Structural covariates included in the multi-scale model

	NIHSS	SSS	BI	Joint
Probability of Improvement				
Y _{j-1}			•	
Age		•	•	
Probability of Not Total Recovery				
Y _{j-1}	•	•	•	
$\Delta(t_j-t_{j-1})$			•	
Probability of Dropout				
Ŷ _{sss}				•
$\Delta(t_j-t_{j-1})$				•
Relative Score Improvement				
Y _{j-1}			•	
Age			•	
Relative Score Decline				
Y _{j-1}	•	•	•	
$\Delta(t_i - t_{i-1})$	•	•	•	

Results – NIH stroke scale

Day

PAGE 2007, Kristin E. Karlsson

Results – Scandinavian stroke scale

Results – Barthel Index

Day

- A model that recognizes similarities and accounts for differences for measurements on multiple stroke scales has been developed. It incorporates:
 - ✓ Disease progression
 - ✓ Structural covariates
 - ✓ A common dropout model
 - Covariance between interindividual variabilities across the three scales

Acknowledgements

AstraZeneca, Södertälje, Sweden for providing data and financial support.